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Conformal field theory: QFT with conformal symmtries.

2D CFT: motivated by random surface and 2D lattice model.

@ Influenced various branches of mathematics since 1980s:
vertex operator algebra, quantum group, moduli space, etc.

@ Started to have a major impact on the probablity theory of
random surface and lattice model since two decades ago.

Goal for Today

Present a sample of results and open questions in probability
that are inspired by CFT ideas and predictions.

Disclaimer: this is not a lecture on CFT itself, but hopefully you
want to know more about it afterwards.
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How to sample a random path?

Discrete approximation

Scaling limit of
simple random walk.

Brownian Bridge

en = i < sin(nrt). {an}: independent standard Gaussians.

B=>"7"1anen, (convergence in the uniform topology).




How to sample a random surface?

Discrete approximation

Mp: uniformly sampled
triangulation of size n.

Viewed as a piecewise linear
Riemannian manifold.

Theorem Le Gall (2011), Miermont (2011)

M, after proper scaling converge to a random metric measure
space in Gromov-Hausdorff-Prokhorov topology.

Brownian sphere: the limiting random sphere.



Random surface and 2D Quantum Gravity

S: a topological surface, e.g. sphere, disk, annulus.

Quantum gravity on S = random geometry on S.

From random geometry to random function

A random geometry on S, conditioned on being,
conformally equivalent to a fixed (S, g), can be written
as (S, e¥g) for some random conformal factor .

(S1,91) and (S», g2) are conformally equivalent
if 3¢ : 84 — S, and a function p on S, s.t. .91 = €795>.
y: conformal embedding. . conformal factor.

CFT description of 2D QG Polyakov (1981)

The conformal factor ¢ is governed by the Liouville CFT,
the 2D quantum field theory defined by Liouville action.




Polyakov’s idea in modern probability language

Conformal embedding of Brownian sphere = ,/8/3-LQG on S2.
The law of the conformal factor ¢ is given by Liouville CFT.

conformal embedding

Liouville quantum gravity (LQG) now have a solid foundation:
random geometry induced by (variants of) Gaussian free field.

Liouville CFT: a particular way of producing variants of GFF.
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Gaussian Free Field on a Riemannian Manifold

{en}n>1: non-constant eigenfunctions of the A on (S, g)
normalized by e.g. [ |Ven[2dvg = 27 and [ e,dvg = 0.

Gaussian free field (GFF) on (S, g)

h:=3%2 1 anen, {ap} i.i.d. standard Gaussians.

@ Convergence holds almost surely in H~1(S, g).
@ E[h(x)h(y)]= — log|x — y| 4+ smooth.

h(z) is not well defined.

h.(z): average of h over
the circle {w : |w — z| = ¢}.

Simulation of h. by H. Jackson.
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Random Geometry of v-LQG

v € (0,2) ¢: a variant of GFF on a planar domain D

~v-LQG area

~D 5 2
Al = e1°d2z = lim._ &7 /2€7¥d%z.

Example of Gaussian multiplicative chaos
Kahane (1985), Duplantier-Sheffield & Rhodes-Vargas, around 2010

~-LQG boundary length

1LY, — ez¢dz on dD. (Gaussian multiplicative chaos)

d} = €% (dx? + dy?). (more difficult but done)

Dubedat-Ding-Dunlap-Falconet & Gwynne-Miller (2019)



Liouville Conformal Field Theory

Constructed rigorously by making sense of the defining
path integral; based on Gaussian multiplicative chaos.

Produce a variant of GFF on each Riemannian manifold (S, g).
sphere: David-Kupiainen-Rhodes-Vargas ’14 (original).

disk: Huang-RV ’15; annulus: Remy ’17 (needed later).
torus: DRV '15; higher genus: Guillarmou-KRV ’16.

Integrability of 2D CFT Belavin-Polyakov-Zamolodchikov "84

2D CFT —> local conformal symmetry —> Virasoro algebra
—> exact formulae of partition functions/correlation functions.

(Rigorous) Integrability of Liouville CFT

DOZZ formula: Kupiainen-Rhodes-Vargas (2017).
Conformal bootstrap: Guillarmou-KRV (2020,2021).

Liouville CFT produce exactly solvable variants of GFF
that are relevant to random surface/quantum gravity.



Polyakov’s idea in modern probability language

Conformal embedding of Brownian sphere = ,/8/3-LQG on S2.
The law of the conformal factor ¢ is given by Liouville CFT.

conformal embedding

@ Sample ¢ according to Liouville CFT on S?. Set v = 1/8/3.

@ Then (S?,d}, A}) is isometric to the Brownian sphere.

@ Uniform triangulations under conformal embedding
should converge in the scaling limit to (S?, d}, A%).

10/34



Theorem Miller-Sheffield ‘15

One can construct an explicit variant of GFF ¢ such that
(S?, d}, A}) is isometric to the Brownian sphere.

Theorem Aru-Huang-S. ’17, Ang-Holden-S. "21

Miller-Sheffield variant agrees with Liouville CFT variant on S?.

A Similar Story for Quantum Gravity on Disk
1. Sample ¢ according to Liouville CFT on D. Set~ = /8/3.
2. Then (D, d}, A}, L}) is isometric to the Brownian disk.
3. Uniform triangulations under conformal embedding

should converge in the scaling limit to (D, d}, A}, L}).
Statements 1 and 2 hold for the disk case, similar to sphere.

The scaling limit conjecture is proved for
a discrete variant of conformal embedding. (Holden-S. ’19)
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Circle packing: a discrete conformal embedding

@ Koebe-Andreev-Thurston Circle Packing Theorem
Triangulations can be uniquely (up to Mobius transforms)
represented as tangency relations between circles.

@ Rudin-Sullivan (1989):

Circle packing — Riemann mapping.

In this paper we prove Thurston’s conjecture that his scheme converges to
the Riemann mapping. Our proof uses a compactness property of circle
packings, a length-area inequality for packings, and an approximate rigidity
result about large pieces of the regular hexagonal packing (§3 and Appendix

FIGURE 1.1. An approximate conformal mapping
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Scaling limit conjecture for discrete uniform random surface

Under various notions of discrete conformal embeddings,
uniform triangulation (or quandrangulation, etc.) converge to
\/8/3-LQG, where the field is given by Liouville CFT.

Circle packing case is open.

The only proved case:
Cardy-Smirnov embedding
Holden-S. (2019)

(Weaker notions of convergence
were proved for various models.)
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Q: Jordan domain.

Site percolation on a piece of
triangular lattice restricted to Q.

Left to right white crossing:
a white path separating
{a, b} and {c, d}.

J: side length of the hexagon.
C(a, b; ¢, d) := P[left to right white crossing occurs].

Kesten (1980)

When p > 1/2, lims_,o Co(a, b; ¢,d) =
C,

1.
When p < 1/2, lims_o C3(a, b; ¢,d) = 0.
When p =1/2, (critical case)
liminfs_,0 C3(a, b; ¢, d) > 0 and limsup;_,o Co(a, b; ¢, d) < 1.
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Conjecture: Conformal Invariance and Cardy’s formula

Aizenmann ’91: lims_,q Cg(a, b; c, d) exists and is conformally
invariant, which only depends on the cross ratio of (a, b, ¢, d).

Cardy '92: an exact limiting formula for the case of rectangles
based on (non-rigorous) conformal field theory.

v

Theorem Smirnov (2001)

Vq: the unique conformal mapping from (2, a, b, ¢) to
the equilateral triangle A = {(x,y,z) : x +y +z=1}NR3.

For z € Q, let p)(z) be the probability that
there exists a white path separating {a, z} and {b, c}.
Similarly define pj(z) and p(z).

Then lims_,o(p3(2), P)(2). PL(2)) = Wa(2).

N

lims_0 Co(a, b; ¢, d) = lims_,0 p3(d) = Wq(d).
When Q is rectangle, Vq(d) gives Cardy’s formula rigorously.
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As Rudin-Sullivan Theorem for circle packing,
Smirnov’s Theorem provides a discrete conformal embedding
which we call the Cardy-Smirnov embedding.

Holden-S. (2019)
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Built on previous joint work with others:

Bernardi-Holden-S. (2018), Holden-Lawler-Li-S. (2018),
Garban-Holden-S.-Sepulveda (2019), Holden-Li-S. (2018),

Albenque-Holden-S. (2019), Gwynne-Holden-S. (2019).
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2D Lattice Model and Conformal Field Theory

Many 2D statistical physics models at their criticality enjoys
conformal symmetry .

@ Partition function ~ (det A)~¢/2 with ¢ < 1.
@ Correlation functions are governed by a CFT.
@ c: central charge of the corresponding CFT.
Example: 2D Percolation: ¢ = 0. 2D Ising: ¢ =1/2.

Ising Model on a 2D lattice.
Hamiltonian: H(o) =, oio;.

Partition function:
Z(T) =3, e M.

Z(T;) ~ (det A)=1/4,
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Schramm Loewner Evolution

Schramm (1999)
Random interfaces in

many 2D statical physics
'''' Tl models should converge
to SLE,; with x > 0.

A few scaling limit results, many more conjectures.

Percolation — SLEg, Ising model — SLE3 (Smirnov et. al.)
o= B =G 4 L2 k=6,c=0; k=3 c=]

G 2
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Cardy’s formula and BPZ equation

Ising model belongs to a well-understood family of CFT called
minimal models. [Belavin-Polyakov-Zamolodchikov (1984)]

Percolaion is believed to be described by a CFT. Without
understanding it fully, Cardy was able to make predicitions.

Original form of Cardy’s formula

2r(2/3 12.4
r(1(/é)2)XF(§7§v§=z)

Z: cross ratio
F: hypergeometric function.

@ Viewed as a four-point correlation function of a CFT.
@ Solution to 2nd order differential eq. due to BPZ (1984).
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CFT and Exact Solvability of SLE

Exact solvability of CFT
= conjectural formula for scaling limit of lattice models
= conjectural formula for the corresponding SLE curve.

Cardy’s percolation formula

g 3] correpsonds to the formula
----- B for the probability of a

R hitting event for SLEg curve.

Many BPZ-equation-inspired formula for SLE can be derived
via Ité calculus (martingale observable method)
due to the natural connection to 2nd order differential egs.

Considered by many: Lawler-Schramm-Werner, Kang-Makarov,
Dubedat, Zhan, Bauer-Bernard-Kytola, Peltola-Wui,...
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Cardy’s Formula for Annulus Crossing

Conijecture: Cardy (2006)

i . 6ir 3 -
lims_,o P [crossing] = \/g%

7= (2r) " log(R/r). (modulus)

n(ir) == &% [Ty, (1 — e~2m).
(Dedekind eta ftn., ubiquitous in CFT)

@ Predicted via a non-rigorous CFT method (Coulomb gas).
@ Hard to access by martingale observable method.
@ Difficulty: there is no natural notion of time.

Theorem S.-Xu-Zhuang (2022+)

Cardy’s conjectural formula for annulus holds.

Proof via the CFT description of quantum gravity on annulus,
although the statement is about percolation on lattice.
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Brownian Annulus

an, by: even integers with limy_0c 2% = @, limp_00 2% = b.
Qn: set of annular quadrangulations with bdy lengths ap,, by.

Sample Q, from Q,, with probability oc 12-#Vvertices,

Definition: Brownian annulus with boundary lengths a, b

nIi_)m Qp in the Gromov-Hausdorff-Prokhorov topology.
(e.e]

Existence follows from work of Betinelli-Miermont.

+— T —>

x Ca";aer{
¥ Embedding

C—C:fo‘ ‘CJ% C'J’J/N

New question: What'’s the law of 77
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Theorem (Modulus of the Brownian Annulus) Ang-Remy-S. '22

BA(a,b)#[r € I] = [,n(i27)p-(2) dr, VI C (0, 00).

BA(a, b)#: law of the Brownian annulus with bdy lengths a, b.
pr: density function for the positive random variable X s.t.

it] _ 2nte—2rTt/3
E[X‘F] ~ 3sinh(27t/3) "

Conjecture Polyakov ‘81, David '88, Distler-Kawai '89
CFT description of (pure) quantum travity on the annulus:

Zrr(T)LE,(dp) X Zghost(7) dT.
——
Liouville CFT ghost CFT

Zopp(T) = W Zaghost(7) 1= 1(207)>.

4

Special case of the general conjecture for CFT description
of Brownian surfaces with non-simply-connected topology.
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oo 1
BA = [[; mBA(a, b)#. (free bdy BA)
Remark: Vab(aib) comes from counting maps in Q.

(classical enumeration problem: Tutte, Brown, Bernardi-Fusy, ...)

Theorem Ang-Remy-S. ’22

BA = [;° (v2)~'n(2ir)LF, (d¢)dr.

LF,: pushforward of P x dx under (h, x) — ¢ = h+ x.
P.: law of GFF on C,. dx: Lebesgue measure on R.

Zrr(7) Zghou(7) = 0(207)/V/2.

Proof outline:
1. BA = [y LF-(dy) m(dr) for some measure m(dr).

2. Explicit law of two bdy lengths under LF,(dy) for each .
(Integrability of Liouville CFT on annulus by Remy, Wu).

3. Identify m(dr) = (v/2)~"'n(2ir)dr by matching bdy lengths.
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Conjecture: CFT description of 2D QG+conformal matter

Zmatter(T) X ZGFF(T)LFT(d(P) X Zghost(T) dr.
——— s ———
matter CFT Liouville CFT ghost CFT

¢: matter central charge. G=IZEENG(EEE %)2.

@ 2D QG is modeled by random triangulation.
@ conformal matter is modeled by lattice models at criticality.
@ cdetermines v = local LQG geometry.
@ Znauer(7) determines the law of modulus.
Our proof idea for Cardy’s annulus crossing formula:
@ View annulus-crossed percolation as a ¢ = 0 matter.
@ P[annulus crossing] can be viewed as Z,er(7)-
@ Use the same method to get Znater(7) Z6Fr(T) Zghost(7)dT.
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Knizhnik-Polyakov-Zamolodchikov (KPZ) Relation
vy

AN

A

Q: If we have n? vertices on the lattice, what is the size of the
boundary connecting cluster? Answer: ~ n°1/48

A KPZ derivation of the scaling exponent

@ On random triangulation, the answer is pduantum exponent,
© 91/48 = KPZ(quantum exponent)

Counting maps is “easy”; KPZ(-) is explicit quadratic.
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History of KPZ

@ Derived from CFT description of 2D QG+matter. (KPZ '88).

@ “Verified” by enumeration of planar maps. (around '90)
David, Douglas, Gross, Kazakov, Kostov, Migdal, Shenker ...

@ Provide a powerful framework to study fractals.

Conijecture Mandelbrot *82

Frontier of planar Brownian motion
has fractal dimension 4/3.

@ physics “proof” by KPZ.  Duplantier '98.

@ rigorous proof via SLEg.
Lawler-Schramm-Werner '00.

@ 1st rigorous KPZ relation. Duplantier-Sheffield *11.
@ KPZ derivation of SLE exp/dim.  Gwynne-Holden-Miller '15.

27/34



Physics methods for scaling exps/dims of 2D lattice models

@ Exact methods for lattice models.  e.g. BPZ ’84 for Ising.
@ KPZ/quantum gravity method. e.g. Duplantier ‘98 for BM.

Math methods for proving corresponding SLE results
@ Martingale observable method.
@ Rigorous KPZ/Liouville quantum gravity method.

N,

Martingale observable method can also give more informative
formulae such as Cardy’s rectangle crossing formula.

We get such formulae via KPZ/LQG method. (New to physicists?)
. (ir)n(3ir)
P[crossing] = \/g %
~ (r/R)>*8(1 + o(1)).
7 := (2r) " "log(R/r).
91/48 =2 —5/48. (bdy cluster exp)
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CFT description of 2D QG+conformal matter on annulus

Zmatter(T) X Z6rr(T)LF-(dg) X Zghost(7) dT.
N—_—— ~ 7 N —
matter CFT Liouville CFT ghost CFT

A general quantum gravity method for deriving formulae for
lattice models on annulus with SLE as its scaling limits:

1.

5.

Interprete the target quantity as Zmater(7).

2. Define an approperiate random annulus model.
3.
4. Explicit law of two bdy lengths under LF.(d¢p) for each tau.

Establish [, LF,(de) m(dr) for some measure m(dr).

(Integrability of Liouville CFT on annulus).
Solve m(d7) hence Znauer(7) by matching bdy lengths.

General method developed in [Ang-Remy-S. '22].
Application to percolation in [S.-Xu-Zhuang '22+].
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An Application to Ising Model

Loop repsentation of Ising model
4 ( ) Zloop collection e'le T
T.: Ising critical temprature.

N # of non-contratible loops

! total length

Theorem: Ang-Remy-S. 22
lims—o E[MV] = Z(q, n)/Z(q, 1). q=e2"=r/R.

3(x+2m7r) 3(x+2mm

Z(q,n) = Zmez 9 P X = —arccos(n/2).

(Again hard to access via martingle observable method.)
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General scaling limit conjecture for the lattice model

¢: central charge of the corresponding CFT.

SLE: ¢ =25 — 6(¥£ 4+ 2.)2, LQG: ¢ = 25 — 6(1 + 2)2.
2 " 2

2
Ising: k=3, ¢ =}, v = V3.

P

Triangulation + Ising — SLE3 +v3-LQG

Unlike triangulation+ percolation (under Cardy-Smirnov embedding),
Scaling limit for the Ising on random triangulation is still open.
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Although the scaling limit conjecture is open in most cases,
the limiting object: SLE + LQG is well understood:

@ quantum zipper Sheffield (2010)
@ mating of trees Duplantier-Miller-Sheffield (2014)

Our quantum gravity method for annulus formula for SLE
conceputally relying on counting maps; but in practice we can
bypass the scaling limit and directly work in the continuum.

Can give formulae for SLE, with x # 3,6 as well.

Limitation: so far cannot go beyond annulus.
Crucially rely on the CFT description for Brownian annulus.
Open question for other surfaces, e.g. torus, pair of pants.
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Conjecture: CFT description of general Brownian surface

Liouville field on (S;, g-) X Zghost(Sr, g-) dT.
(S-, g-): a Riemann mainifold with conformal modulus 7.

Ghost CFT: non-physical, come from conformal gauge fixing.
@ Central charge of ghost CFT = -26. Polyakov '81
@ Liouville central charge: ¢, = 1 +6(3 + 2)2.  Polyakov '81

<
c+CL+(—26)=0 = c=25-6(3+2)°

@ Torus: Zgnou(7)dT = explicit.  Polchinski, David-Rhodes-Vargas

@ Surface with genus >1 D’hoker-Phong, Guillamou-R.-V.
Zanost(T)dT = Selberg ¢(2) x Weil-Petersson measure.

Difficulties in proving the conjecture beyond annulus:
@ No boundary lengths to match for closed surfaces.
@ Liouville CFT is exactly solvable but very complicated.
@ Lack of fundamental understanding of ghost CFT.
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@ CFT gives powerful predictions for
random surfaces and 2D lattice models.

@ Many of them are verified by SLE/LQG,
especially for sphere, disk, and annulus.

@ But there are still a lot to be understood.

Outlook

@ Convergence of discrete random surfaces to LQG.

@ Brownian surfaces beyond sphere, disk, and annulus:
random modulus, ghost CFT, Weil-Petersson measure.

@ Full understanding of CFT behind percolation:
beyond quantum gravity method? rigorous Coulomb gas?

@ Many other lattice models: self avoiding walk, dimer,
six-vertex, Q-Potts, random cluster, O(n) model...
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